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Abstract

This paper presents a new algorithm for material interface reconstruction for data sets where fractional ma-

terial information is given as a percentage for each element of the underlying mesh. The reconstruction problem

is transformed to a problem that analyzes a dual data set, where each vertex in the dual mesh has an associated

barycentric coordinate tuple that represents the fraction of each material present. After constructing the dual

mesh from the original mesh, material boundaries are constructed by mapping a simplex into barycentric space,

calculating the intersections with Voronoi cells that represent the regions where one material dominates. These

intersections are mapped back to the original space and triangulated to form a boundary surface approximation.

This algorithm can be applied to any grid structure and can treat any number of materials per element. It is

a generalization of previous work, extending the reconstruction to three-dimensional grids, generating contin-

uous surfaces for the boundary representation, and allowing for any number of materials to be present. Error

analysis shows that the algorithm preserves volume fractions within an error range of 0.5% per material.

Keywords: Eulerian flow, material boundaries, finite elements, barycentric coordinates, volume fraction, iso-
surface extraction.

1P.O. Box 808, L-312, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; e-mail:ksbonnell@ucdavis.edu

2Center for Advanced Scientific Computing (CASC), Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; e-mail:
duchaine@llnl.gov

3Computational Engineering International, Morrisville, NC 27560, USA; e-mail:schikore@ceintl.com
4Corresponding Author, Center for Image Processing and Integrated Computing (CIPIC), Department of Computer Science, University

of California, Davis, CA 95616-8562, USA; e-mail:joy@cs.ucdavis.edu
5Center for Image Processing and Integrated Computing (CIPIC), Department of Computer Science, University of California, Davis,

CA 95616-8562, USA; e-mail:hamann@cs.ucdavis.edu

1



(0.6,0.4) (0.02,0.98)

(1.0, 0.0) (0.3,0.7)

FIGURE 1: Original grid and dual grid. The original grid (dashed lines) is replaced by a dual grid (solid lines), obtained by connecting

the centers of the original elements. Barycentric coordinates are associated with each vertex of the dual grid. The barycentric coordinates

represent the fractions of each material associated with the original grid cells.

1. INTRODUCTION

In many applications it is necessary to reconstruct or track the boundary surfaces (or “interfaces”) between multiple

materials that commonly result from finite-element simulations. Multi-fluid Eulerian hydrodynamics calculations

require geometric approximations of fluid interfaces to form the equations of motion to advance interfaces over

time. Typically, the grid cells (finite elements) contain fractional information for each of the materials. Each cell

C of a gridS has an associated tuple(α1, α2, ..., αm) that represents the portions of each ofm materials in the

cell, i.e., αi represents the fractional part of materiali. It is assumed thatα1 + α2 + · · · + αm = 1 andαi ≥ 0.

Given the fractions for each cell, we wish to find a crack-free piecewise two-manifold surface approximating the

boundary surfaces between the various materials.

To solve this problem, we consider the dual mesh constructed from the original mesh, as shown in Figure 1. In

the dual grid, each cell is represented by a point (typically the center of the cell), and each point has an associated

tuple(α1, α2, ..., αm), wherem is the number of materials present in the data set. Thus, the boundary surface re-

construction problem reduces to constructing the material interfaces for a grid where each vertex has an associated

barycentric coordinate tuple representing the fractional parts of each material. This “barycentric coordinate field”

is used to approximate the material boundary surfaces.

Important applications of this problem occur for all grid types,e.g., rectilinear, curvilinear, or unstructured

grids. Therefore, we developed a solution strategy that is tailored to tetrahedral grids, as all other types of three-

dimensional grid structures can be converted to this form, see Nielson [1]. In the case of rectilinear, curvilinear, or

even hybrid polyhedral meshes, a given grid is pre-processed by subdividing each polyhedral cell into tetrahedra

and applying this algorithm to the resulting tetrahedral grid.

Given a data set containingm materials, we process each tetrahedral cell of the grid and map our tetrahe-
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dral elements into anm simplex representingm-dimensional barycentric space. Next, we calculate intersections

with the edges ofVoronoi cells[2] in the m-simplex. These Voronoi cells represent regions, where one material

“dominates” the other materials locally. We map these intersections back to the original space and triangulate the

resulting points to obtain a boundary approximation.

We limit our discussion to three-dimensional grids. However, the techniques extend directly to multi-dimensional

grids. In these cases, we convert the grid to a set ofn-dimensional simplices, mapping these simplices into

barycentric space. The intersections with a corresponding set of Voronoi cells can be calculated directly and

mapped back to the original space. Triangulating the results is straightforward.

Section 2 describes previous work dealing with reconstruction of material boundary surfaces. Section 3 de-

scribes the two-material case, which can be viewed as a simple extension of a isosurface extraction technique.

[3, 4, 5]. Section 4 describes the three-material case. Here, material boundaries are calculated in barycentric space

(a triangle) and mapped back to the original data set. The generalm-material case is described in Section 5. In

this case, intersections are calculated in a barycentricm-simplex and mapped back to the tetrahedra in the data set.

Implementation details are described in Section 6. Section 7 presents results for various data sets, and Section 8

provides error analysis.

2. RELATED WORK

Most research in material interface reconstruction has been conducted in computational fluid dynamics (CFD)

and hydrodynamics, where researchers are concerned with the movement of material boundaries during a simu-

lation. TheSimple Line Interface Calculation(SLIC) algorithm by Noh and Woodward [6] is one of the earliest

algorithms, describing a method for geometric approximation of fluid interfaces. Their algorithm is used in con-

junction with hydrodynamics simulations to track the advection of fluids. It produces an interface consisting of line

segments, constructed parallel or perpendicular to a coordinate axis. Multi-fluid cells can be handled by grouping

fluids together, calculating the interface between the groups, subdividing the groups, and iterating this process.

Since this algorithm only uses line segments that are parallel to the coordinate axes, the resulting interfaces are

generally discontinuous.

In determining the direction of the line segment, cells to the left and right (in the appropriate coordinate direc-

tion) of the current cell are considered, and classified according to the fluid index. The fluid index indicates the

presence (1) or absence (0) of a material. Mixed-fluid cells have multiple fluid indices, one per material. Fluids

with the same fluid index are grouped together so that only two types may be treated at one time.

Consider a two-fluid 2D cell consisting of materialsA (30%) andB (70%), and an x-direction pass of the

algorithm, If the left neighbor contains only materialA and the right neighbor contains only materialB, the

algorithm will generate an interface in the mixed fluid cell approximated by a vertical line dividing the cell into

two regions, 30%A on the left and 70%B on the right. If that same cell has both left and right neighbors consisting

entirely of materialA, then the interface in the mixed-material cell would consist of two vertical lines dividing the
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FIGURE 2: Example data set (a). The specific volume fractions are listed for each cell. The approximations generated by the SLIC

algorithm are shown in (b) and (c), using an x-pass and y-pass, respectively.

cell into three parts: 15% materialA on the left, 70% materialB in the center, and 15% materialA on the right.

Consider a three-fluid cell containing 20%A, 45%B, and 35%C, again with an x-direction pass. If the left

neighbor consists entirely of materialA and the right neighbor consists entirely of materialB, then the interface

would be represented by two vertical lines, dividing the cell into three zones, with materialA on the left,C in

the middle, andB on the right. If the left neighbor contains bothA andB and the right neighbor containsA and

C, then a horizontal line segment is used to first construct the zone with materialA, then the remaining portion

of the cell is divided by a vertical line withB on the left andC on the right. These simple rules can be used to

generate material interfaces for two-dimensional rectilinear grids. Figure 2 shows the approximation generated by

the SLIC algorithm, with both an x-coordinate and y-coordinate pass. Although the interface is discontinuous, the

volume fractions are preserved for each cell.

The algorithm of Youngs [7] also operates on two-dimensional grids and uses line segments to approximate

interfaces. In this algorithm, the line segments are not necessarily perpendicular or parallel to a coordinate axis.

Instead, the neighbor cells of a cellC are used to determine the slope of a line segment approximating an interface

in C. The exact location of the line segment is adjusted to preserve volume fractions. Multiple materials are

treated by grouping materials and determining interfaces on a two-material basis. Again, the resulting interfaces

are generally discontinuous.

Since this algorithm treats only two materials (or groups of materials) at a time, one of the materials is used

to determine the slope of the interface line. This is done by using neighboring fractions of this material, and the

Pythagorean theorem. Figure 3 demonstrates the neighbors of a cell containing materialsA andB. The cell is

treated as a unit-square for this calculation. The slope is defined as
√

(δA − γA)2 + (βA − αA)2, whereαA, βA,
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FIGURE 3: Two-material cell with material fractionsfA andfB . Neighbor cells have material fractionsαA, βA, γA, andδA for material

A. The slope of the line is determined by the values ofαA, βA, γA, andδA. The position of the line is defined byfA andfB

γA, andδA are the fractions of materialA present in the neighbor cells1 Once the slope is determined, the line

segment is positioned in the cell such that the volume fractions are preserved. For more than two materials, the

user determines in which order interfaces are calculated. Different interfaces will result depending on the chosen

ordering/grouping. Figure 4 demonstrates the results of applying Youngs’ algorithm.

The algorithm of Gueyffier [8] is similar to that of Youngs in that it requires an estimate of the normal vector to

the interface in order to reconstruct the interface. Geuyffier’s method utilizes finite-differencing or least-squares

methods to determine this normal, depending upon the order of accuracy (first- or second-order) desired. In 2D,

a line segment representing the boundary surface is constructed perpendicular to the interface normal. The line

segment is positioned in the cell such that it divides the cell into appropriately proportioned areas. In the 3D case,

a cutting plane is computed whose normal is the interface normal. Again, the cutting plane is positioned in the cell

so that volume fractions are preserved. It is unclear how this algorithm would handle multiple materials.

Pilliod and Puckett [9] compare various volume-of-fluid interface reconstruction algorithms, including SLIC,

noting differences in the surfaces reconstructed and demonstrating first-order or second-order accuracy. Their goal

is to develop an algorithm that accurately reproduces a linear material interface, allowing discontinuous interfaces

if the material boundary is not linear.

Nielson and Franke [10] have presented a method for calculating a separating surface in an unstructured grid

where each vertex of the grid is associated with one of several possible classes. Their method generalizes the

marching-cubes (or marching-tetrahedra) algorithm, but instead of using a strict binary classification of vertices,

it allows any number of classes. Edges in tetrahedral grids whose endpoints have different classifications are

intersected by the separating surface. Similarly, the faces of a tetrahedron whose three vertices are classified

differently, are assumed to be intersected by the surface in the middle of the face. When all four vertices of a

tetrahedron have different classifications, the boundary surface intersects in the interior of the tetrahedron. The

1We may use neighboring “corner” cells to determine the slope if this equation fails. Also, one may have to use the ”negative” square
root to determine the correct slope.
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FIGURE 4: Result of Youngs’ algorithm applied to the data shown in (a). The material interface representation (b) is discontinuous.

resulting “mid-edge,” “mid-face,” and “mid-tetrahedron” intersections are triangulated to linearly approximate the

surface.

Using the dual-grid representation, Figure 5 shows how Nielson and Franke’s algorithm might be applied to the

example data set. As this algorithm requires classification of vertices, the greaterαi value in the volume fraction

tuple for each cell was chosen as the classifier. The dual mesh has also been triangulated so that the algorithm can

be applied. Mid-edge intersections are made half-way between two endpoints that have different classifications.

Mid-face intersections are assumed when all three vertices of the triangle have different classifications.

This paper is an expanion of our work discussed in [11]. Our algorithm generalizes the above schemes. It

utilizes a dual-grid approach, where each vertex of the grid has an associated barycentric coordinate. This allows

the generation of material boundaries directly from intersections calculated in “barycentric space.” The algorithm

handles multiple materials and can reconstruct layers and “Y-type” (non-manifold) interfaces. The algorithm does

not rely on application-specific knowledge of hydrodynamics or other simulation codes, but solves the problem

from a purely mathematical viewpoint.

3. THE TWO-MATERIAL CASE

Consider a gridS containingn materials, i.e., Each vertex ofS has an associated barycentric coordinateα =

(α1, α2..., αn). A cell C of S is called atwo-material cellif there are two indicesi1 andi2, such that the associated

barycentric coordinateα = (α1, α2..., αn). of each vertex ofC has the property thatαi = 0 for i 6= i1, i2.

If C is a two-material cell, then without loss of generality, we can assume that each vertex has a barycentric

coordinate represented by a two-tuple,α = (α1, α2), whereα1 + α2 = 1. Given two pointsp1 andp2 with
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FIGURE 5: Applying the Nielson-Franke algorithm. The test data set (a) represents only “classes” of data, The boundary reconstruction

result is shown in (b)

� ��� � ���� ��� � �	�
 � �� ��������� � ��
�

��������� � �! #"%$&(')�* ')%+

FIGURE 6: Mapping the barycentric coordinates in the two-material case, results in a line segment, lying on the line having endpoints

(1, 0), and(0, 1). We assume that the material boundary corrresponds to the point
(

1
2
, 1

2

)
associated barycentric coordinate tuplesα(1) andα(2), respectively, the points lie on a line in barycentric space

with endpointsα(1) andα(2), as is shown in Figure 6. We assume the material boundary corresponds to the set of

points whereα1 = α2 = 1
2

2. There are two cases:

1. The line segmentα(1)α(2) does not contain the point(1
2 , 1

2). In this case, we assume that the line does not

intersect the material boundary.

2. The line segmentα(1)α(2) does contain the point(1
2 , 1

2). In this case, we assume that the line does intersect

the material boundary. We use linear interpolation to calculate a fractionr such that

(
1
2
,
1
2
) = (1− r)α(1) + rα(2)

and define the point

(1− r)p1 + rp2

as the point on the linep1p2 that crosses the material boundary.

2This is clearly a heuristic choice, but the most reasonable among all the points of the line.
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FIGURE 7: Calculating a material interface in the two-material case. A material interface can intersect the tetrahedron in two ways. In

case (a), one triangle is produced, in case (b), two triangles are produced.

SupposeT is a triangle contained in a two-dimensional triangular grid with verticesp1, p2, andp3, and asso-

ciated barycentric coordinatesα(1), α(2), andα(3), respectively. The triangle can be analyzed with a two-material

strategy if the associated barycentric coordinates for the three vertices are such that for allk, α
(k)
i andα

(k)
j are

non-zero for two fixedi andj, and all other entries are zero. In this case, we test the three edges of the triangle for

intersection with the material boundary separating materialsi andj. Two cases arise:

1. No edge intersects the material boundary. In this case, we assume that the triangle does not intersect the

material boundary.

2. Exactly two edges intersect the material boundary. In this case, we calculate the points on the edges where

the boundary interface exists and connect the two points with a line.

If T is a tetrahedron contained in a tetrahedral grid, then we can apply the two-material strategy provided the

associated barycentric coordinates have at most two non-zero entries, each occurring at one of two materials. In

this case, we test the six edges of the tetrahedron and consider the three cases:

1. No edge crosses the material boundary. In this case, we assume that the tetrahedron does not cross the

material boundary.

2. Exactly three edges cross the material boundary. In this case, we calculate the points on the edges where the

boundary interface intersects and connect these points creating a triangle. This is shown in Figure 7a.

3. Exactly four edges cross the material boundary. In this case, we calculate the points on the edges where the

boundary interface intersects and connect these points, creating a quadrilateral. This quadrilateral is split

into two triangles. This is shown in Figure 7b.

This is equivalent to the marching-tetrahedra algorithm [5], and therefore, the two-material case is equivalent

to an isosurface calculation.
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FIGURE 8: The triangle formed by barycentric coordinates of degree three is shown in (a). The partitioned barycentric triangle is shown

in (b). The pointc is the point( 1
3
, 1

3
, 1

3
), the center of the triangle. The line segmentsl12, l13, andl23 bound the Voronoi cellsVj in the

interior of the triangle.

4. THE THREE-MATERIAL CASE

Consider a gridS containingn materials, i.e., Each vertex ofS has an associated barycentric coordinateα =

(α1, α2..., αn). A cell C of S is called athree-material cellif there are three indicesi1, i2 and i3, such that

the associated barycentric coordinateα = (α1, α2..., αn). of each vertex ofC has the property thatαi = 0 for

i 6= i1, i2, i3.

In the three-material case, it is sufficient to assume that each vertex has an associated 3-tupleα = (α1, α2, α3),

whereα1 +α2 +α3 = 1. Here,α1 is the fraction of materialm1, α2 is the fraction ofm2, andα3 is the fraction of

m3, respectively. The coordinate tuple(α1, α2, α3) lies on the equilateral triangle with vertices(1, 0, 0), (0, 1, 0),

and(0, 0, 1), as shown in Figure 8a. The triangle is partitioned into three regions, defined by theVoronoi cells

V1, V2, andV3, see Figure 8b. The Voronoi cellsVj are bounded by the edges of the triangle, and the three line

segmentsl12, l13, and l23, whereα1 = α2 andα3 ≤ 1
3 , α1 = α3 andα2 ≤ 1

3 , or α2 = α3 andα1 ≤ 1
3 ,

respectively.

For two-dimensional triangular grids, the associated barycentric coordinates of a triangleT are mapped onto

a triangleT ′ in barycentric space. The intersections of the edges ofT ′ with the edges of the Voronoi cells in the

barycentric triangle are used to define material interfaces inT ′. These intersections are then mapped back linearly

to points inT . There are three cases:

• The triangleT ′ does not intersectl12, l13, or l23. In this case, it is assumed that no material boundary exists

in T .

• The triangleT ′ intersects at least one of the line segmentsl12, l13, or l23 and the centerc of the barycentric

triangle does not lie insideT ′. In this case, intersections are calculated on the edges ofT , corresponding to
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FIGURE 9: Mapping from barycentric space to physical space. The images on the left show the triangleT ′ in barycentric space, and the

images on the right show the material boundary line segments mapped from barycentric space to the original triangleT in physical space.
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the intersections ofT ′ with l12, l13, andl23, respectively. (The triangleT ′ may intersect at most two of these

lines.) The material boundary line segments insideT are then defined by the line segments that connect the

corresponding edge intersections inT . Figures 9a, 9d, and 9e illustrate these cases.

• The pointc lies insideT ′. In this case, three edge intersections are calculated forT , corresponding to

the intersections ofT ′ with l12, l13, andl23, respectively. We also determine a point in the interior ofT ,

corresponding to the pointc in T ′. The material boundary line segments are defined as the three lines

connecting the edge intersections and the face point. Figures 9b and 9c illustrate this case.

If one of theαi values is zero for each of the three vertices of a triangle, then all points map to an edge of the

barycentric triangle. Thus, the situation reduces to the two-material case. If only one material is present at all three

vertices, then no intersections are calculated.

For tetrahedral grids, the barycentric values associated with the vertices of a tetrahedronT are used to map the

tetrahedron to an imageT ′ of T in barycentric space. Intersections are calculated separately for each face ofT ′,

which are then mapped back toT . For the faces of a tetrahedraon, there are three cases to consider:

• No edge of the tetrahedronT ′ intersects the line segmentsl12, l13, or l23. In this case, no material boundaries

exist in the tetrahedronT .

• The edges of the tetrahedronT ′ intersect at least one of the line segmentsl12, l13, or l23, but the point

(1
3 , 1

3 , 1
3), the center of the barycentric triangle, does not lie inside any of the faces ofT ′. In this case,

the intersection line segments for each face ofT are calculated and a triangulation is determined from

these segments by imitating the triangulation rules for an isosurface extraction algorithm [5]. Figures 10a-d

illustrate the possible cases.

• The center point of the barycentric triangle lies inside two faces ofT ′. In this case, two faces have a single

material boundary line segment connecting two edge intersection points, and two faces have three material

boundary line segments meeting in the interior of these faces. The intersections are mapped back linearly

to the tetrahedronT , using linear interpolation. Using the material boundary line segments for each face,

and the line segment connecting the two points in the interior of two faces ofT , a valid triangulation of the

boundary surface can be determined. Figures 10e-g illustrate the possible cases.

5. THE GENERAL CASE

Consider a gridS containingn materials, i.e., Each vertex ofS has an associated barycentric coordinateα =

(α1, α2..., αn). A cell C of S is called ak-material cellif there arek indicesi1, i2, ..., ik, such that the associated

barycentric coordinateα = (α1, α2..., αn). of each vertex ofC has the property thatαi = 0 for i 6= i1, ..., ik. It

is easiest to examine thek-material case, by first looking at the four-material case.
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FIGURE 10: Material boundary construction for tetrahedral grids.
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(a) (b)

FIGURE 11: Voronoi cell decomposition for the four-material case. The figure illustrates a three-dimensional projection of the barycentric

tetrahedron from four-dimensional space. The tetrahedron is segmented into four Voronoi cells in (a). A tetrahedron, mapped from physical

space, is shown inside the barycentric tetrahedron in (b).

In the case of four materials, it is sufficient to assume that each vertex has an associated barycentric coordinate

given by a four-tupleα = (α1, α2, α3, α4), whereα1 + α2 + α3 + α4 = 1, andαi ≥ 0. By considering

the tetrahedron having vertices(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) in four-dimensional space, a

partition of this tetrahedron can be constructed similarly to the three-material case. Again, the Voronoi cells are

used for the decomposition of the barycentric tetrahedron. The boundaries of these cells include parts of the faces

of the tetrahedron and six planar pieces, which are defined byα1 = α2, α1 = α3, α1 = α4, α2 = α3, α2 = α4,

andα3 = α4. This Voronoi partition is shown in Figure 11a.

For two-dimensional grids, the four-dimensional barycentric coordinates associated with the vertices of a trian-

gleT are mapped into a triangleT ′ in barycentric space. A clipping algorithm is used to generate the intersections

in the triangleT ′, clipping a triangle against the six planes defining the boundaries of the Voronoi cells of the

barycentric tetrahedron. The tetrahedron is stored in a binary space partitioning (BSP) tree, and the clipping al-

gorithm described by Samet [12] is applied. Once the intersections are determined by the clipping algorithm, the

material boundary line segments can be determined for the triangleT . For tetrahedral grids, a similar clipping

algorithm is used for the imageT ′ of a tetrahedronT . This enables the calculation of the boundary surfaces inside

the tetrahedronT ′, which are then mapped back to the tetrahedronT in physical space.

In thek-material case, a simplexT is mapped to ak-simplexT ′ in barycentric space. Thek-simplex is parti-

tioned into Voronoi cells whose boundaries consist of the faces of thek-simplex and the
(
k
2

)
hyperplanes defined

by αi = αj , where1 ≤ i < j ≤ k. The material boundaries forT ′ are calculated by using a clipping algorithm

and are then mapped back to physical space to form the material boundaries insideT . A BSP algorithm is utilized

to perform the clipping.
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6. DISCUSSION

The algorithm presented in this paper runs in effectively the same time as does the marching cubes/tetrahedra

algorithm. The cells of a grid are traversed, and we calculate, for each cell, a polygonal representation of the

material boundaries. Most grid cells in common examples contain only one material, and boundaries do not exist

in these cells.

The algorithm can miss material boundaries in tetrahedra. In any isosurface-type algorithm, it is possible for the

isosurface to enter a tetrahedron, but only intersect one edge. In this case, the algorithm cannot detect the material

boundary from only the vertex information alone. As illustrated in Figure 10a, when a tetrahedron has non-zero

fractions of all three materials, it is possible that only two materials are extracted.

In the three-material case, the pointc = (1
3 , 1

3 , 1
3) has been chosen as the “center” of the barycentric triangle.

This assumes that there are three distinct sectors in the barycentric triangle, subdividing the triangle in a “Y”

fashion, and that a cell of infinitesimally small size contains about one-third of each material in the cell. This

is not always the case. For example, consider a “T intersection,” where any small cell contains one-half of one

material and one-quarter of the other two materials. The segmentation of the barycentric triangle can be adjusted

so that the pointc is at an arbitrary location in the triangle, and the edges that determine the intersections can be

adjusted appropriately. This can be done by sampling in a larger neighborhood of a specific cell to understand how

to weigh the materials about the “Y point.” This is a global process: neighboring cells must agree with the change

in order to maintain continuity.

In the four-material case, the center of the tetrahedron can also be adjusted. However, this implies that the

center vertices on the faces must also be adjusted so that the separating surfaces remain planar, and this then

affects the adjacent tetrahedra. In them-material case, similar considerations also hold when adjusting the center

of them-simplex.

The algorithm presented here is a direct generalization of the Nielson-Franke algorithm [10]. Each vertex of

a gridS has an associated barycentric coordinateα = (α1, α2, ..., αm), and by restricting material fractions such

that exactly oneαi = 1, the case is obtained where each vertex is only associated with one material. In this case,

our algorithm produces the same results produced by the Nielson-Franke algorithm.

7. RESULTS

We have generated material interfaces for a variety of data sets. Figure 12 illustrates the material interfaces for a

data set consisting of three materials. The boundary of the region containing material 1 has a spherical shape, and

the other two material regions are formed as concentric layers around material 1 – forming two material interfaces.

The original grid is rectilinear-hexahedral, consisting of64 × 64 × 64 cells. The dual grid was constructed, and

each dual cell was split into six tetrahedra, see Nielson [1], creating 1,572,864 tetrahedra. Approximately 30%

of the tetrahedra containing the material boundaries contain two boundary surfaces and require the construction

14



FIGURE 12: Boundary surfaces of three materials defined by two concentric spherical layers.

illustrated in Figure 10c and 10d.

The algorithm generalizes to data sets having several concentric boundary layers. If we haven possible mate-

rials per cell, the algorithm can return up ton− 1 boundaries per cell.

Figure 13 shows the material interfaces for a three-material data set of a simulation of a ball striking a plate

consisting of two materials. The original data set is rectilinear-hexahedral and has a resolution of53 × 23 × 23

cells. Again, the dual grid was created, and each dual cell was split into six tetrahedra, creating 28,037 tetrahedra.

Four time-steps are shown.

Figure 14 illustrates the material interfaces for a human brain data set. The original grid is rectilinear-hexahedral

containing256× 256× 124 cells. Each cell contains a probability tuple defining the probability that a material is

present at the point: gray matter, white matter, or other material. The resulting dual data set contains over eight

million tetrahedra.

8. ERROR ANALYSIS

Given a data set and an extracted material interface, we can use the generated interface to approximate material

fractions for each cell and compare them to the original fractions. Given an original cellC, and a pointc at the

center of the cell, the pointc is a vertex of the dual mesh. There is a set of tetrahedra, generated when the cells of

the dual mesh are subdivided, that containc as a vertex. Each tetrahedron is partitioned into a set of polyhedra,

each polyhedron containing a single material. These polyhedra are clipped against the boundaries ofC, and the

volumes of the clipped polyhedra are added to the volume fractions forC. Normalizing by the volume of the

cell, we obtain a set of volume fractions determined by the extracted material interface. This procedure enables

us to calculate the difference between the original volume fractions and volume fractions implied by the extracted
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FIGURE 13: Time-dependent simulation of a ball striking a plate consisting of two materials. The sequence shows the boundary surfaces

as the ball penetrates the plate.

(a) (b)

FIGURE 14: Brain data set. Material boundary surfaces are shown in red, green, and yellow. The polygons defining the material

boundaries are clipped to show the interior of the data set. Two views of the material boundary surfaces, are shown in (a) and (b).
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FIGURE 15: Error analysis for ”thin shells data set” shown in Figure 12.

material interface. It is not accurate on the boundary of the data set since the dual cells do not cover the original

cells there.

In Figures 15 and Figures 17, errors calculated from the “thin shells” and the “brain” data sets. Errors are

reported as numbers of dual cells that fall into a certain error range (Dual cells that contained zero error for a

particular material are not reported.) The first error range is the interval (0, 0.05]. Figure 15 shows the errors for

the data set shown in Figure 12. There are250, 047 total dual cells total. The number of zero-error dual cells

for materials1, 2 and3 are232975, 226275, and233679, respectively. Figure 16 provides a comparison of the

original and new volume fractions. If we sum the volume fractions for the complete data set and compare it with

the calculated fractions, the error is actually quite low. This is evident from Figure 16.

Figure 17 shows the errors for the brain data set shown in Figure 14. The number of zero-error dual cells

for materials1, 2, and3 are6414488, 6973917, and7172956, respectively. Figure 18 provides a comparison of

original and new volume fractions.

In general, the approximation faithfully represents the material interface, with little error. We found that in the

cells with larger error, most are multiple material cells, where the calculated “Y” point appears in the wrong cell.

In these cases, the “Y” point is at most one cell off.
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Original volume fractions (summed over original mesh)

New volume fractions (summed over dual mesh)

0.5205060 0.0276901 0.4518040

difference: 0.0049170 0.0002886 0.0046280

material 1 material 2 material 3

0.5155890 0.0279787 0.4564320

Thin Shells

FIGURE 16: Summing the total fractions over the mesh.
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FIGURE 17: Error analysis for the brain data set in Figure 14.

Original volume fractions (summed over original mesh)

New volume fractions (summed over dual mesh)

0.1177090 0.0840189 0.7982720

difference: 0.0048540 0.0000359 0.0048890

material 1 material 2 material 3

0.1225630 0.0840548 0.7933830

Brain

FIGURE 18: Summing the total fractions over the mesh.
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9. CONCLUSIONS

In this paper, we have presented a new algorithm for material interface construction from data sets containing

volume-fraction information. A given grid is transformed to a dual grid, where each vertex has an associated

barycentric coordinate tuple that represents the fractions of each material. After subdividing the dual grid into

simplices, the material interfaces are constructed by mapping each simplex to barycentric space, calculating the

intersections with Voronoi cells in barycentric space. These intersection points are mapped back to physical space

and triangulated to form the resulting boundary surface approximation. The algorithm can treat any number of

materials per cell, and since it is based on simplicial grids, it can be used for any grid structure.

In the future, we would like to add a “measure-and-adjust” feature to this algorithm. Once an initial boundary

surface approximation is calculated, the calculation of (new) volume fractions can be done directly from this

boundary surface approximation, as shown in Section 8. It is then possible to adjust material interfaces to minimize

volume fraction deviations. It may also be possible to adjust the material interface within each simplex (or higher-

level cell), to “optimize” the material interface. If so, it will be possible to preserve volume fractions on a per-

simplex (per-cell) basis.
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